On Predicting Cancer Mortality Using Anova-type P-spline Models
نویسندگان
چکیده
• Extrapolating cancer mortality trends can be very valuable as a tool to predict cancer burden. National Health Agencies use different models to figure out future evolution of cancer, but they mainly work at national level. However, developed countries are divided into different regions with their own governments and health care systems, and this should be taken into account. In this paper, an ANOVA-type P-spline model is considered to predict the number of mortality cases in forthcoming years in regions within a country. The model is very interesting as it allows to split the predictions into components representing region-specific features and characteristics common to the whole country. Prediction variability is also calculated to provide prediction intervals. Real data on cancer mortality are used for illustration.
منابع مشابه
Estimation of Variance Components for Body Weight of Moghani Sheep Using B-Spline Random Regression Models
The aim of the present study was the estimation of (co) variance components and genetic parameters for body weight of Moghani sheep, using random regression models based on B-Splines functions. The data set included 9165 body weight records from 60 to 360 days of age from 2811 Moghani sheep, collected between 1994 to 2013 from Jafar-Abad Animal Research and Breeding Institute, Ardabil province,...
متن کاملPredicting Flow Number of Asphalt Mixtures Based on the Marshall Mix design Parameters Using Multivariate Adaptive Regression Spline (MARS)
Rutting is one of the major distresses in the flexible pavements, which is heavily influenced by the asphalt mixtures properties at high temperatures. There are several methods for the characterization of the rutting resistance of asphalt mixtures. Flow number is one of the most important parameters that can be used for the evaluation of rutting. The flow number is measured by the dynamic creep...
متن کاملPredicting Survival of Patients with Lung Cancer Using Improved Adaptive Neuro-Fuzzy Inference System
Introduction: Lung cancer is the main cause of mortality in both genders worldwide. This disease is caused by the uncontrollable growth and development of cells in both or one of the lungs. Although the early diagnosis of this cancer is not an easy task, the earlier it is diagnosed, the higher will be the chance of treating. The objective of this study was to develop an optimized prediction mod...
متن کاملPredicting Survival of Patients with Lung Cancer Using Improved Adaptive Neuro-Fuzzy Inference System
Introduction: Lung cancer is the main cause of mortality in both genders worldwide. This disease is caused by the uncontrollable growth and development of cells in both or one of the lungs. Although the early diagnosis of this cancer is not an easy task, the earlier it is diagnosed, the higher will be the chance of treating. The objective of this study was to develop an optimized prediction mod...
متن کاملUsing recursive algorithms for the efficient identification of smoothing spline ANOVA models
In this paper we present a unified discussion of different approaches to the identification of smoothing spline analysis of variance (ANOVA) models: (i) the “classical” approach (in the line of Wahba in Spline Models for Observational Data, 1990; Gu in Smoothing Spline ANOVA Models, 2002; Storlie et al. in Stat. Sin., 2011) and (ii) the State-Dependent Regression (SDR) approach of Young in Nonl...
متن کامل